Weak selection and recent mutational changes influence polymorphic synonymous mutations in humans.

نویسنده

  • Josep M Comeron
چکیده

Recent large-scale genomic and evolutionary studies have revealed the small but detectable signature of weak selection on synonymous mutations during mammalian evolution, likely acting at the level of translational efficacy (i.e., translational selection). To investigate whether weak selection, and translational selection in particular, plays any role in shaping the fate of synonymous mutations that are present today in human populations, we studied genetic variation at the polymorphic level and patterns of evolution in the human lineage after human-chimpanzee separation. We find evidence that neutral mechanisms are influencing the frequency of polymorphic mutations in humans. Our results suggest a recent increase in mutational tendencies toward AT, observed in all isochores, that is responsible for AT mutations segregating at lower frequencies than GC mutations. In all, however, changes in mutational tendencies and other neutral scenarios are not sufficient to explain a difference between synonymous and noncoding mutations or a difference between synonymous mutations potentially advantageous or deleterious under a translational selection model. Furthermore, several estimates of selection intensity on synonymous mutations all suggest a detectable influence of weak selection acting at the level of translational selection. Thus, random genetic drift, recent changes in mutational tendencies, and weak selection influence the fate of synonymous mutations that are present today as polymorphisms. All of these features, neutral and selective, should be taken into account in evolutionary analyses that often assume constancy of mutational tendencies and complete neutrality of synonymous mutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes

Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...

متن کامل

Nucleotide polymorphism at the RpII215 gene in Drosophila subobscura. Weak selection on synonymous mutations.

Nucleotide variation in an 8.1-kb fragment encompassing the RpII215 gene, which encodes the largest subunit of the RNA polymerase II complex, is analyzed in a sample of 11 chromosomes from a natural population of Drosophila subobscura. No amino acid polymorphism was detected among the 157 segregating sites. The observed numbers of preferred and unpreferred derived synonymous mutations can be ex...

متن کامل

The effects of demography and linkage on the estimation of selection and mutation parameters.

We explore the effects of demography and linkage on a maximum-likelihood (ML) method for estimating selection and mutation parameters in a reversible mutation model. This method assumes free recombination between sites and a randomly mating population of constant size and uses information from both polymorphic and monomorphic sites in the sample. Two likelihood-ratio test statistics were constr...

متن کامل

Patterns of mutation and selection at synonymous sites in Drosophila.

That natural selection affects molecular evolution at synonymous sites in protein-coding sequences is well established and is thought to predominantly reflect selection for translational efficiency/accuracy mediated through codon bias. However, a recently developed maximum likelihood framework, when applied to 18 coding sequences in 3 species of Drosophila, confirmed an earlier report that the ...

متن کامل

Large-Effect Beneficial Synonymous Mutations Mediate Rapid and Parallel Adaptation in a Bacterium.

Contrary to previous understanding, recent evidence indicates that synonymous codon changes may sometimes face strong selection. However, it remains difficult to generalize the nature, strength, and mechanism(s) of such selection. Previously, we showed that synonymous variants of a key enzyme-coding gene (fae) of Methylobacterium extorquens AM1 decreased enzyme production and reduced fitness dr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 18  شماره 

صفحات  -

تاریخ انتشار 2006